Improving Direct Marketing Profitability with Neural Networks

نویسنده

  • Zaiyong Tang
چکیده

Data mining in direct marketing aims at identifying the most promising customers to send targeted advertising. Traditionally, statistical models are used to make such a selection. The success of statistical models depends on the validity of certain assumptions about data distribution. Artificial intelligence inspired models, such as genetic algorithms and neural networks, do not need those assumptions. In this paper, we test neural networks with real-world direct marketing data. Neural networks are used for performance maximization at various mailing depth. Compared with statistical models, such as logistic regression and ordinary least squares regression, the neural network models provide more balanced outcome with respect to the two performance measures: the potential revenue and the churn likelihood of a customer. Given the overall objective of identifying the churners with the most revenue potential, neural network models outperform the statistical models by a significant margin. General Terms Direct marketing, linear regression, artificial neural networks, direct response modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response modeling with support vector regression

Response modeling, which predicts whether each customer will respond or how much each customer will spend based on the database of customers, becomes a key factor of direct marketing. In previous researches, several classification approaches, include Support Vector Machines (SVM) and Neural Networks (NN), have been applied for response modeling. However, there are two drawbacks of conventional ...

متن کامل

Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network

Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from A...

متن کامل

Social Networks as Innovative Tools for Consumer Relationship Management

In recent years, the increase in social network users showed new platforms for collecting data on market trends and products acceptance, as well as for supporting the relationships with clients and adapting firms’ communication strategies. As a consequence, marketers are forced to consider these systems as tool for attracting, maintaining, and managing clients in order to increase the firms’ pr...

متن کامل

Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network

Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from A...

متن کامل

A DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing

One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011